4.7 Review

The role of the M-band myomesin proteins in muscle integrity and cardiac disease

期刊

JOURNAL OF BIOMEDICAL SCIENCE
卷 29, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12929-022-00801-6

关键词

Myomesin-1; Myomesin-2; M-protein; Myomesin-3; M-band; Sarcomere; Muscle; Cardiovascular disease

资金

  1. Fondation Coeur & Recherche, France
  2. St. Petersburg State University, St. Petersburg, Russia [73022475]

向作者/读者索取更多资源

Transversal structural elements in cross-striated muscles, such as the M-band or the Z-disc, play important roles in anchoring and mechanically stabilizing the sarcomere. Specifically, the M-band acts as a mechanical and signaling hub during contraction and impairment of its function can lead to disease and death. Research on the M-band architecture has focused on the assembly and interactions of three major filamentous proteins, including myomesin-2 and myomesin-3, but limited information is available. Recent studies have linked the myomesin protein family, especially myomesin-2, to serious cardiovascular diseases, highlighting their importance in muscle function and disease.
Transversal structural elements in cross-striated muscles, such as the M-band or the Z-disc, anchor and mechanically stabilize the contractile apparatus and its minimal unit-the sarcomere. The ability of proteins to target and interact with these structural sarcomeric elements is an inevitable necessity for the correct assembly and functionality of the myofibrillar apparatus. Specifically, the M-band is a well-recognized mechanical and signaling hub dealing with active forces during contraction, while impairment of its function leads to disease and death. Research on the M-band architecture is focusing on the assembly and interactions of the three major filamentous proteins in the region, mainly the three myomesin proteins including their embryonic heart (EH) isoform, titin and obscurin. These proteins form the basic filamentous network of the M-band, interacting with each other as also with additional proteins in the region that are involved in signaling, energetic or mechanosensitive processes. While myomesin-1, titin and obscurin are found in every muscle, the expression levels of myomesin-2 (also known as M-protein) and myomesin-3 are tissue specific: myomesin-2 is mainly expressed in the cardiac and fast skeletal muscles, while myomesin-3 is mainly expressed in intermediate muscles and specific regions of the cardiac muscle. Furthermore, EH-myomesin apart from its role during embryonic stages, is present in adults with specific cardiac diseases. The current work in structural, molecular, and cellular biology as well as in animal models, provides important details about the assembly of myomesin-1, obscurin and titin, the information however about the myomesin-2 and -3, such as their interactions, localization and structural details remain very limited. Remarkably, an increasing number of reports is linking all three myomesin proteins and particularly myomesin-2 to serious cardiovascular diseases suggesting that this protein family could be more important than originally thought. In this review we will focus on the myomesin protein family, the myomesin interactions and structural differences between isoforms and we will provide the most recent evidence why the structurally and biophysically unexplored myomesin-2 and myomesin-3 are emerging as hot targets for understanding muscle function and disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据