4.6 Article

Achieving 17.5% efficiency for polymer solar cells via a donor and acceptor layered optimization strategy

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 10, 期 14, 页码 5489-5496

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2tc00024e

关键词

-

资金

  1. National Natural Science Foundation of China [62175011, 61975006, 62105017]
  2. Postdoctoral Innovative Talent Support Program [BX20200042]
  3. China Postdoctoral Science Foundation [2020M680327]
  4. Beijing Natural Science Foundation [4192049]

向作者/读者索取更多资源

Layer-by-layer polymer solar cells (LbL-PSCs) were prepared with PNTB6-Cl as the donor and Y6 as the acceptor using solvent additives DPE and DFB. The PCE of the optimal LbL-PSCs reached 17.53%, with over 7% enhancement compared to LbL-PSCs without solvent additives. Different solvent additives in the donor and acceptor solutions can optimize the photogenerated exciton distribution and charge transport. LbL-PSCs show better PCEs compared to bulk heterojunction PSCs, indicating their great potential for commercial application.
Layer-by-layer polymer solar cells (LbL-PSCs) were prepared with PNTB6-Cl as the donor and Y6 as the acceptor by a sequential spin-coating method. Two solvent additives DPE and DFB were individually incorporated into PNTB6-Cl chlorobenzene solution and Y6 chloroform solution. A PCE of 17.53% was achieved for the optimal LbL-PSCs with two solvent additives, which is much larger than the PCE of 16.38% for the LbL-PSCs without solvent additives. Over 7% PCE enhancement can be realized by individually employing solvent additives in donor and acceptor layers, resulting from the simultaneously enhanced open circuit voltage (V-OC) of 0.88 V, short circuit current density (J(SC)) of 26.63 mA cm(-2) and fill factor (FF) of 74.83%. The photogenerated exciton distribution, charge transport and collection in the LbL-PSCs can be optimized by employing different solvent additives in donor and acceptor solutions. Meanwhile, the efficient energy transfer from PNTB6-Cl to Y6 can provide an additional channel for improving the exciton utilization efficiency through exciton dissociation at PNTB6-Cl/Y6 interfaces. Meanwhile, the PCEs of LbL-PSCs are better than those of bulk heterojunction PSCs with the same materials and solvent additives, indicating the great potential of LbL-PSCs for commercial application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据