4.7 Article

Disorders can induce continuously varying universal scaling in driven systems

期刊

PHYSICAL REVIEW E
卷 105, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.105.034104

关键词

-

资金

  1. SERB, DST (India) [MTR/2020/000406]

向作者/读者索取更多资源

We elucidate the nature of universal scaling in a class of quenched disordered driven models and explore the intriguing possibility of continuously varying universality classes when coupled with quenched disorders.
We elucidate the nature of universal scaling in a class of quenched disordered driven models. In particular, we explore the intriguing possibility of whether coupling with quenched disorders can lead to continuously varying universality classes. We examine this question in the context of the Kardar-Parisi-Zhang (KPZ) equation, with and without a conservation law, coupled with quenched disorders having distributions with pertinent structures. We show that when the disorder is relevant in the renormalization group sense, the scaling exponents can depend continuously on a dimensionless parameter that defines the disorder distribution. This result is generic and holds for quenched disorders with or without spatially long-ranged correlations, as long as the disorder remains a relevant perturbation on the pure system in the renormalization group sense and a dimensionless parameter naturally exists in its distribution. We speculate on its implications for generic driven systems with quenched disorders, and we compare and contrast with the scaling displayed in the presence of annealed disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据