4.8 Review

Angstrom-scale ion channels towards single-ion selectivity

期刊

CHEMICAL SOCIETY REVIEWS
卷 51, 期 6, 页码 2224-2254

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cs00582k

关键词

-

资金

  1. Australian Research Council [DP180100298, FT200100259]
  2. USTC Research Funds of the Double First-Class Initiative [YD2060002017]
  3. Natural Science Foundation of Anhui Province [2108085MB33]
  4. Australian Research Council [FT200100259] Funding Source: Australian Research Council

向作者/读者索取更多资源

This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels, discusses their ion selectivity and applications, and explores the gaps between natural channels and synthetic channels in terms of ion selectivity and permeability.
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据