4.8 Article

'Stateful' threshold switching for neuromorphic learning

期刊

NANOSCALE
卷 14, 期 13, 页码 5010-5021

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1nr05502j

关键词

-

资金

  1. Science and Technology Planning Project of Guangdong Province [2020B0101030008]
  2. National Natural Science Foundation of China [61674059, 52002135]
  3. Innovative and Key Project of the Education Department of Guangdong Province [2017KTSCX050, 2019KZDZX1010, 2019KTSCX033]
  4. Rural Science and Technology Commissioner Project [KTP20200112]

向作者/读者索取更多资源

Researchers propose a method of using memristors for neuromorphic computing, which can achieve energy efficiency and simulate the functions of biological neurons. By introducing threshold switching with different resistive states, different learning and forgetting behaviors can be achieved, with flexible tunability and ultra-low power consumption.
Memristors have promising prospects in developing neuromorphic chips that parallel the brain-level power efficiency and brain-like computational functions. However, the limited available ON/OFF states and high switching voltage in conventional resistive switching (RS) constrain its practical and flexible implementations to emulate biological synaptic functions with low power consumption. We present 'stateful' threshold switching (TS) within the millivoltage range depending on the resistive states of RS, which originates from the charging/discharging parasitic elements of a memristive circuit. Fundamental neuromorphic learning can be facilely implemented based on a single memristor by utilizing four resistive states in 'stateful' TS. Besides the metaplasticity of synaptic learning-forgetting behaviors, multifunctional associative learning, involving acquisition, extinction, recovery, generalization and protective inhibition, was realized with nonpolar operation and power consumption of 5.71 pW. The featured 'stateful' TS with flexible tunability, enriched states, and ultralow operating voltage will provide new directions toward a massive storage unit and bio-inspired neuromorphic system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据