4.6 Article

Template-free synthesis of Bi2O2CO3 hierarchical nanotubes self-assembled from ordered nanoplates for promising photocatalytic applications

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 24, 期 14, 页码 8279-8295

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cp05952a

关键词

-

资金

  1. National Natural Science Foundation of China [52162040]

向作者/读者索取更多资源

In this study, hierarchical Bi2O2CO3 nanotubes were synthesized via a one-step hydrothermal route. The effects of reaction time on the morphology and performance of the nanotubes were investigated. The 3-hour-derived nanotubes exhibited the highest photocatalytic performance and were capable of degrading various organic pollutants and purifying simulated industrial wastewater.
In this study, we have adopted a one-step hydrothermal route to synthesize an interesting type of Bi2O2CO3 hierarchical nanotubes self-assembled from ordered nanosheets. The effects of reaction time on the morphological and structural evolution, light absorption properties, photoelectrochemical performance, and photocatalytic performance of the prepared hierarchical nanotubes were investigated. Among the products synthesized at different reaction times, the 3-hour-derived Bi2O2CO3 hierarchical nanotubes were identified to possess the highest photocatalytic performance. To promote the photocatalytic application of the as-synthesized Bi2O2CO3 hierarchical nanotubes, their performance was systematically evaluated via the photodegradation of various organic pollutants (e.g., methyl orange (MO), rhodamine B (RhB), methylene blue (MB), ciprofloxacin (CIP), sulfamethoxazole (SMX) and tetracycline hydrochloride (TC)) and the photoreduction of Cr(vi) under simulated-sunlight irradiation. Furthermore, their photocatalytic performance was also evaluated by purifying simulated industrial wastewater (i.e., a MO/RhB/MB mixed solution) at different pH values and containing different inorganic anions. Based on the experimental data and density functional theory (DFT) calculations, the involved photocatalytic mechanism was discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据