4.5 Article

Microarray analysis reveals an important role for dietary L-arginine in regulating global gene expression in porcine placentae during early gestation

期刊

FRONTIERS IN BIOSCIENCE-LANDMARK
卷 27, 期 1, 页码 -

出版社

IMR PRESS
DOI: 10.31083/j.fbl2701033

关键词

Amino acids; Metabolism; Nutrition; Pigs; Placenta; Pregnancy

资金

  1. USDA National Institute of Food and Agriculture [2015-67015-23276]

向作者/读者索取更多资源

This study found that dietary supplementation with L-arginine can affect gene expression in the placenta, thereby improving placental growth and embryonic/fetal survival in swine. The results indicate that L-arginine plays a regulatory role in various important metabolic and physiological processes.
Background: Increasing the dietary provision of L-arginine to pregnant swine beginning at Day 14 of gestation enhances embryonic survival, but the underlying mechanisms are largely unknown. Objective: This study determined the effects of dietary supplementation with 0.8% L-arginine to gilts between Days 14 and 25 of gestation on the global expression of genes in their placentae. Methods: Between Days 14 and 24 of gestation, gilts were fed 2 kg of a corn- and soybean meal-based diet (containing 12.0% crude protein and 0.70% Arg) supplemented with 0.8% L-arginine or without L-arginine (0.0%; with 1.64% L-alanine as the isonitrogenous control). On Day 25 of gestation, 30 min after the consumption of their top dressing containing 8 g L-arginine or 16.4 g L-alanine, gilts underwent hysterectomy to obtain placentae, which were snap-frozen in liquid nitrogen. Total RNAs were extracted from the frozen tissues and used for microarray analysis based on the 44-K Agilent porcine gene platform. Results: L-Arginine supplementation affected placental expression of 575 genes, with 146 genes being up-regulated and 429 genes being down-regulated. These differentially expressed genes play important roles in nutrient metabolism, polyamine production, protein synthesis, proteolysis, angiogenesis, immune development, anti-oxidative responses, and adhesion force between the chorioallantoic membrane and the endometrial epithelium, as well as functions of insulin, transforming growth factor beta, and Notch signaling pathways. Conclusion: Dietary supplementation with L-arginine plays an important role in regulating placental gene expression in gilts. Our findings help to elucidate mechanisms responsible for the beneficial effect of L-arginine in improving placental growth and embryonic/fetal survival in swine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据