4.6 Article

Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics

期刊

ACS ENERGY LETTERS
卷 2, 期 1, 页码 250-255

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.6b00620

关键词

-

资金

  1. U.S. Department of Energy at Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]
  2. Laboratory Directed Research and Development Grant [15-ERD-022]

向作者/读者索取更多资源

Polyborane salts based on B12H122-, B10H102-, CB11H12-, and CB9H10- demonstrate high Li and Na superionic conductivity that makes them attractive as electrolytes in all-solid-state batteries. Their chemical and structural diversity creates a versatile design space that could be used to optimize materials with higher conductivity at lower temperatures; however, many mechanistic details remain enigmatic, including reasons why certain known modifications lead to improved performance. We use extensive ab initio molecular dynamics simulations to explore the dependence of ionic conductivity on cation/anion pair combinations for Li and Na polyborane salts. Further simulations are used to probe the influence of local modifications to chemistry, stoichiometry, and composition. Carbon doping, anion alloying, and cation off-stoichiometry are found to favorably introduce intrinsic disorder, facilitating local deviation from the expected cation population. Lattice expansion likewise has a positive effect by aiding anion reorientations that are critical for conduction. Implications for engineering polyboranes for improved ionic conductivity are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据