4.6 Article

Capillary bridges between unsaturated nano-mineral particles: a molecular dynamics study

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 24, 期 14, 页码 8398-8407

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cp05041a

关键词

-

资金

  1. Australian Research Council [IH150100006]

向作者/读者索取更多资源

This study used molecular dynamic simulation to investigate the formation process of nanoscale capillary bridges. The results showed that classical capillary theory breaks down at the nanoscale and observed oscillation in the adhesive force. Additionally, a non-linear correlation between adhesive force and saturation degree was identified.
Capillary bridges play an important role in the process of cohesion, which is crucial for wet granular media, and engineering of pharmaceuticals and food processing. However, the understanding of capillary bridges at the nanoscale remains unclear because the mechanical performance of nanoscale capillary bridges cannot be fully captured and explained by classical capillary theory. We applied a novel molecular dynamic simulation to investigate the dynamic formation process of nanoscale capillary bridges between quartz asperities. In comparison with classical capillary theory, our results suggested that the application of the toroidal approximation and gorge method will break down at the scale of 1 nm. Below this threshold, a pronounced oscillation in the adhesive force was observed due to inconsistent distribution of water molecules in the capillary bridges. Moreover, we found a non-linear correlation between the adhesive force and the saturation degree. Different from the cohesive stress of sandy soil as a function of saturation degree, we identified an optimal saturation range of 0.5-0.7 instead of 0.2-0.9 for the sandy soil. Our findings enhance the understanding of capillary bridges and provide new insights into the capillary force between particles in the fields of geotechnical engineering, food-process engineering, the pharmaceutical industry and nanotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据