4.2 Article

Statistical inference of one-dimensional persistent nonlinear time series and application to predictions

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.013206

关键词

-

向作者/读者索取更多资源

This study introduces a method that combines fractional calculus and discrete-time Langevin equations to reconstruct macroscopic models of one-dimensional stochastic processes with long-range correlations from sparsely sampled time series. The method is demonstrated using specific examples, showing the potential application of long-memory models in short-term to seasonal predictions.
We introduce a method for reconstructing macroscopic models of one-dimensional stochastic processes with long-range correlations from sparsely sampled time series by combining fractional calculus and discrete-time Langevin equations. The method is illustrated for the ARFIMA(1,d,0) process and a nonlinear autoregressive toy model with multiplicative noise. We reconstruct a model for daily mean temperature data recorded at Potsdam, Germany and use it to predict the first-frost date by computing the mean first passage time of the reconstructed process and the 0 degrees C temperature line, illustrating the potential of long-memory models for predictions in the sub seasonal-to-seasonal range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据