4.7 Article

Genetic deletion of p66shc and/or cyclophilin D results in decreased pulmonary vascular tone

期刊

CARDIOVASCULAR RESEARCH
卷 118, 期 1, 页码 305-315

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvaa310

关键词

Pulmonary hypertension; p66shc; CypD; mitochondria; Calcium

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [268555672 - SFB 1213]

向作者/读者索取更多资源

This study found that the mitochondrial proteins p66shc and CypD regulate pulmonary vascular tone through the modulation of mPTP opening. Specifically, p66shc controls pulmonary vascular tone, while CypD also affects systemic pressure. Furthermore, CypD regulates mPTP opening and mitochondrial calcium regulation.
Aims The pulmonary vascular tone and hypoxia-induced alterations of the pulmonary vasculature may be regulated by the mitochondrial membrane permeability transition pore (mPTP) that controls mitochondrial calcium load and apoptosis. We thus investigated, if the mitochondrial proteins p66shc and cyclophilin D (CypD) that regulate mPTP opening affect the pulmonary vascular tone. Methods and results Mice deficient for p66shc (p66shc(-/-)), CypD (CypD(-/-)), or both proteins (p66shc/CypD(-/-)) exhibited decreased pulmonary vascular resistance (PVR) compared to wild-type mice determined in isolated lungs and in vivo. In contrast, systemic arterial pressure was only lower in CypD(-/-) mice. As cardiac function and pulmonary vascular remodelling did not differ between genotypes, we determined alterations of vascular contractility in isolated lungs and calcium handling in pulmonary arterial smooth muscle cells (PASMC) as underlying reason for decreased PVR. Potassium chloride (KCl)-induced pulmonary vasoconstriction and KCl-induced cytosolic calcium increase determined by Fura-2 were attenuated in all gene-deficient mice. In contrast, KCl-induced mitochondrial calcium increase determined by the genetically encoded Mito-Car-GECO and calcium retention capacity were increased only in CypD(-/-) and p66shc/CypD(-/-) mitochondria indicating that decreased mPTP opening affected KCl-induced intracellular calcium peaks in these cells. All mouse strains showed a similar pulmonary vascular response to chronic hypoxia, while acute hypoxic pulmonary vasoconstriction was decreased in gene-deficient mice indicating that CypD and p66shc regulate vascular contractility but not remodelling. Conclusions We conclude that p66shc specifically regulates the pulmonary vascular tone, while CypD also affects systemic pressure. However, only CypD acts via regulation of mPTP opening and mitochondrial calcium regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据