4.8 Article

Nonhomologous end joining as key to CRISPR/Cas-mediated plant chromosome engineering

期刊

PLANT PHYSIOLOGY
卷 188, 期 4, 页码 1769-1779

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/plphys/kiab572

关键词

-

资金

  1. European Research Council ERC [ERC-2016-AdG_741306 CRISBREED]

向作者/读者索取更多资源

Heritable plant chromosome engineering can be achieved in somatic cells using CRISPR/Cas to induce nonhomologous double-strand break repair pathways. This technology allows for large-scale restructuring of plant chromosomes, including duplications, inversions, and translocations. The use of nonhomologous end joining pathways in somatic cells facilitates efficient chromosomal rearrangements. This breakthrough has the potential to revolutionize plant breeding.
Heritable plant chromosome engineering can be achieved in somatic cells using CRISPR/Cas to induce nonhomologous double-strand break repair pathways. Introduction Although clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated gene editing has revolutionized biology and plant breeding, large-scale, heritable restructuring of plant chromosomes is still in its infancy. Duplications and inversions within a chromosome, and also translocations between chromosomes, can now be achieved. Subsequently, genetic linkages can be broken or can be newly created. Also, the order of genes on a chromosome can be changed. While natural chromosomal recombination occurs by homologous recombination during meiosis, CRISPR/Cas-mediated chromosomal rearrangements can be obtained best by harnessing nonhomologous end joining (NHEJ) pathways in somatic cells. NHEJ can be subdivided into the classical (cNHEJ) and alternative NHEJ (aNHEJ) pathways, which partially operate antagonistically. The cNHEJ pathway not only protects broken DNA ends from degradation but also suppresses the joining of previously unlinked broken ends. Hence, in the absence of cNHEJ, more inversions or translocations can be obtained which can be ascribed to the unrestricted use of the aNHEJ pathway for double-strand break (DSB) repair. In contrast to inversions or translocations, short tandem duplications can be produced by paired single-strand breaks via a Cas9 nickase. Interestingly, the cNHEJ pathway is essential for these kinds of duplications, whereas aNHEJ is required for patch insertions that can also be formed during DSB repair. As chromosome engineering has not only been accomplished in the model plant Arabidopsis (Arabidopsis thaliana) but also in the crop maize (Zea mays), we expect that this technology will soon transform the breeding process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据