4.6 Article

Identifying the charge density and dielectric environment of graphene using Raman spectroscopy and deep learning

期刊

ANALYST
卷 147, 期 9, 页码 1824-1832

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2an00129b

关键词

-

向作者/读者索取更多资源

The impact of the environment on the properties of graphene can be evaluated by Raman spectroscopy, and a deep learning model has been developed to classify graphene Raman spectra according to different charge densities and dielectric environments, overcoming variations and challenges in accurate spectral analysis.
The impact of the environment on the properties of graphene such as strain, charge density, and dielectric environment can be evaluated by Raman spectroscopy. These environmental interactions are not trivial to determine since they affect the spectra in overlapping ways. Data pre-processing such as background subtraction and peak fitting is typically used. Moreover, collected spectroscopic data vary due to different experimental setups and environments. Such variations, artifacts, and environmental differences pose a challenge for accurate spectral analysis. In this work, we developed a deep learning model to overcome the effects of such variations and classify graphene Raman spectra according to different charge densities and dielectric environments. We consider two approaches: deep learning models and machine learning algorithms to classify spectra with slightly different charge densities or dielectric environments. These two approaches show similar success rates for high signal-to-noise data. However, deep learning models are less sensitive to noise. To improve the accuracy and generalization of all models, we use data augmentation through additive noise and peak shifting. We demonstrated the spectral classification with 99% accuracy using a convolutional neural net (CNN) model. The CNN model can classify Raman spectra of graphene with different charge doping levels and even subtle variations in the spectra of graphene on SiO2 and graphene on silanized SiO2. Our approach has the potential for fast and reliable estimation of graphene doping levels and dielectric environments. The proposed model paves the way for achieving efficient analytical tools to evaluate the properties of graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据