4.6 Article

Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia's Subarctic Taiga

期刊

LAND
卷 11, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/land11030322

关键词

smoldering fires; zombie fires; boreal forest; permafrost; Evenki; subarctic

资金

  1. National Science Foundation [1748092]
  2. Tyumen Oblast Government, as part of the West-Siberian Interregional Science and Education Center [89-DON (1)]
  3. Russian Academy of Sciences [AAAA-A21-121012190059-5, AAAA-A21-121012190063-2, AAAA-A21-121012190056-4]

向作者/读者索取更多资源

This study focuses on permafrost peatland fires in the Siberian subarctic region and examines their dynamics through field studies and remote sensing data analysis. It reveals the prevalence and unique characteristics of these fires, such as longer fire risk periods and impacts on communities and wildlife. The study also highlights the limited capacity of satellite imagery to accurately capture changing wildfire activity in permafrost peatlands, which has significant implications for global climate.
Wildfires in permafrost areas, including smoldering fires (e.g., zombie fires), have increasingly become a concern in the Arctic and subarctic. Their detection is difficult and requires ground truthing. Local and Indigenous knowledge are becoming useful sources of information that could guide future research and wildfire management. This paper focuses on permafrost peatland fires in the Siberian subarctic taiga linked to local communities and their infrastructure. It presents the results of field studies in Evenki and old-settler communities of Tokma and Khanda in the Irkutsk region of Russia in conjunction with concurrent remote sensing data analysis. The study areas located in the discontinuous permafrost zone allow examination of the dynamics of wildfires in permafrost peatlands and adjacent forested areas. Interviews revealed an unusual prevalence and witness-observed characteristics of smoldering peatland fires over permafrost, such as longer than expected fire risk periods, impacts on community infrastructure, changes in migration of wild animals, and an increasing number of smoldering wildfires including overwintering zombie fires in the last five years. The analysis of concurrent satellite remote sensing data confirmed observations from communities, but demonstrated a limited capacity of satellite imagery to accurately capture changing wildfire activity in permafrost peatlands, which may have significant implications for global climate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据