4.8 Article

Post-exfoliation functionalisation of metal-organic framework nanosheets via click chemistry

期刊

NANOSCALE
卷 14, 期 16, 页码 6220-6227

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr00346e

关键词

-

资金

  1. EPSRC [EP/S021124/1]

向作者/读者索取更多资源

Liquid exfoliation of layered MOFs to form MONs, followed by click reactions for post-exfoliation functionalization, allows for tuning of surface properties and enables various applications.
The liquid exfoliation of layered metal-organic frameworks (MOFs) to form nanosheets (MONs) exposes buried functional groups making them useful in a range of sensing and catalytic applications. Here we show how high yielding click reactions can be used post-exfoliation to systematically modify the surface chemistry of MONs allowing for tuning of their surface properties and their use in new applications. A layered amino-functionalised framework is converted through conventional post-synthetic functionalisation of the bulk MOF to form azide functionalised frameworks of up to >99% yield. Ultrasonic liquid exfoliation is then used to form few-layer nanosheets, which are further functionalised through post exfoliation functionalisation using Cu(i)-catalysed azide-alkyne cycloaddition reactions. Here we demonstrate the advantages of post-exfoliation functionalisation in enabling: (1) a range of functional groups to be incorporated in high yields; (2) tuning of nanosheet surface properties without the need for extensive recharacterisation; (3) the addition of fluorescent functional groups to enable their use in the sensing of hazardous nitrobenzene. We anticipate that the versatility of different functional groups that can be introduced through high yielding click reactions will lead to advances in the use of MONs and other 2D materials for a variety of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据