4.6 Article

Na+/vacancy disordered manganese-based oxide cathode with ultralow strain enabled by tuning charge distribution

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 10, 期 19, 页码 10391-10399

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ta00688j

关键词

-

资金

  1. National Natural Science Foundation of China [22005082]
  2. Natural Science Foundation of Hebei Province [B2020202065]
  3. Hebei Province Education Department Science and Technology Research Project [QN2020209]
  4. German Research Foundation (DFG) under the joint German-Russian project Acronym KIBSS [448719339]

向作者/读者索取更多资源

The introduction of highly electropositive Sn4+ can solve the issue of Na+/vacancy ordering in layered manganese-based oxide cathodes, improving the migration of sodium ions and reducing strain during cycles. This research provides an effective strategy for designing high-performance cathode materials in rechargeable sodium-ion batteries and beyond.
Layered manganese-based oxide cathodes have attracted extensive attention in sodium-ion batteries (SIBs) due to their low cost and high volumetric energy density. However, Na+/vacancy ordering destabilizes the host structure and retards Na+ diffusion. Herein, we report that this issue can be solved by introducing the highly electropositive Sn4+ to tune charge distribution and then reduce electron delocalization as well as in-plane Na+-Na+ electrostatic repulsions. The disordered Na vacancy arrangement and suppressed P ' 2 <-> P2 phase transition enable P ' 2-Na0.67Mn0.95Sn0.05O2 with fast Na+ migration and ultralow strain (<1%) during cycles. Thus, high reversible capacity of 131.2 mA h g(-1) and coulombic efficiency of 99.77% are achieved at 50 mA g(-1) after 200 cycles. Besides, based on a low reaction energy barrier, the electrode exhibits high Na-storage activity in a wide temperature range of -20 to 70 degrees C. These observations provide an effective strategy for designing high-performance cathode materials in rechargeable SIBs and beyond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据