4.5 Article

Thermal conductivity of monolayer hexagonal boron nitride nanoribbons

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 108, 期 -, 页码 66-71

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2015.06.006

关键词

Hexagonal boron nitride; Heat conductivity; Nonequilibrium molecular dynamics; Two-dimensional materials

向作者/读者索取更多资源

Using reverse nonequilibrium molecular dynamics simulations (RNEMD), the thermal conductivity of monolayer hexagonal boron nitride (h-BN) nanoribbons as a function of length, width and edge chirality are investigated. While width effects on the thermal conductivity are not considerable, by increasing the length of ribbons their thermal conductivity significantly increases. The thermal conductivity of infinitely long armchair and zigzag nanoribbons are respectively predicted to be 277.78 W/m K and 588.24 W/m K, which are about one order of magnitude less than those of graphene. Moreover, we have studied the impact of monovanacies and Stone-Wales defects. While both monovacancies and Stone-Wales defects drastically lower the thermal conductivity of BN ribbons, the Stone-Wales defects have a more sever impact on the thermal transport properties of h-BN ribbons. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据