4.6 Article

Functional, Physicochemical, Rheological, Microbiological, and Organoleptic Properties of Synbiotic Ice Cream Produced from Camel Milk Using Black Rice Powder and Lactobacillus acidophilus LA-5

期刊

FERMENTATION-BASEL
卷 8, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/fermentation8040187

关键词

black rice powder; camel milk; synbiotic; Lactobacillus acidophilus LA-5; incorporation

资金

  1. Taif University, Taif, Saudi Arabia [TURSP-2020/93]

向作者/读者索取更多资源

In recent years, camel milk has gained popularity due to its therapeutic effects. This study successfully developed a synbiotic ice cream using camel milk and black rice powder, and investigated the viability of probiotic bacteria during storage. The results showed that incorporating black rice powder significantly improved the physicochemical and rheological properties of the ice cream.
Camel milk has become more popular among customers in recent years as a result of its therapeutic effects. In many parts of the world, it is considered one of the primary components of human nutrition. The present study aimed to develop a novel synbiotic ice cream from camel milk formulated with black rice powder (BRP) and investigate the viability of probiotic bacteria (Lactobacillus acidophilus LA-5) during the storage period (60 days). Skim milk powder was replaced by BRP at levels of 0, 25, 50, and 75%. The produced ice cream was examined for some physicochemical, rheological, microbiological, and sensorial properties. The obtained results indicated that the incorporation of BRP into ice cream blends resulted in significant increases in the overrun, viscosity, and melting resistance of ice cream samples (p < 0.05). However, the freezing point decreased with increasing the proportion of BRP in the blend. The sensory evaluation results showed that the most acceptable treatments were those formulated with 25% and could be increased to 50% of BRP with no significant differences. The incorporation of BRP improved the viability of Lactobacillus acidophilus LA-5 in ice cream samples over 60 days of storage. Collectively, a synbiotic camel milk ice cream formulated with black rice powder was produced that, in turn, enhanced the physicochemical and rheological properties of ice cream samples and produced a significant protective effect on the viability of probiotic bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据