4.5 Article

Europa's plasma interaction with an inhomogeneous atmosphere: Development of Alfven winglets within the Alfven wings

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
卷 121, 期 10, 页码 9794-9828

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JA022479

关键词

-

资金

  1. Verbundforschung Astronomy und Astrophysik [50OR1313]

向作者/读者索取更多资源

We apply a three-dimensional magnetohydrodynamic (MHD) model to study the influence of inhomogeneities in Europa's atmosphere, as, for example, water vapor plumes, on Europa's plasma interaction with the Jovian magnetosphere. In our model we have included electromagnetic induction in a subsurface water ocean, collisions between ions and neutrals, plasma production and loss due to electron impact ionization, and dissociative recombination. We present a systematic study of the plasma interaction when a local inhomogeneity in the neutral density is present within a global sputtering generated atmosphere. We show that an inhomogeneity near the north or south pole affects the plasma interaction in a way that a pronounced north-south asymmetry is generated. We find that an Alfven winglet develops within Europa's main Alfven wing on that side where the inhomogeneity is located. In addition to the MHD model we apply an analytic model based on the model of Saur et al. (2007) to understand the role of steep gradients and discontinuities in the interaction. We compare our model results with the measured magnetic field data from three flybys of the Galileo spacecraft at Europa which included Alfven wing crossings. Our analysis suggests that the magnetic field might be influenced by atmospheric inhomogeneities during the E26 flyby. The findings of this work will aid in the search for plumes at Europa in future plasma and field observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据