4.5 Article

On the scaling factor in Debye-Gruneisen model: A case study of the Mg-Zn binary system

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 98, 期 -, 页码 34-41

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2014.10.056

关键词

Debye-Gruneisen model; Mg-Zn; Mg; Zn; First-principles; Debye temperature

资金

  1. Center for Computational Materials Design (CCMD)
  2. National Science Foundation (NSF) - United States [DMR-1006557]
  3. NSF [DMR-0820404, DMR-1210588]
  4. National Natural Science Foundation of China [51429101]
  5. Division Of Materials Research
  6. Direct For Mathematical & Physical Scien [1006557] Funding Source: National Science Foundation

向作者/读者索取更多资源

The utility of the Debye-Gruneisen has been investigated with respect to a finite-temperature fitting parameter known as the scaling factor. This scaling factor is studied using bcc, fcc, hcp systems and the Mg-Zn binary system. Predicted Debye temperatures, using a calculated scaling factor, show good agreement with experiments and improvements over the scaling factor derived by Moruzzi et al. Finite-temperature thermodynamic properties of Mg, Zn, Mg4Zn7, MgZn2, and Mg2Zn11 are investigated to show the efficiency and improved accuracy of the calculated scaling factor. For the intermetallic compounds except Mg2Zn11, Theta(D) predictions are improved upon greatly by implementing a calculated scaling factor. Along the same line, heat capacity is also predicted, showing good agreement with experimental values for these compounds. For Mg2Zn11, the Debye-Gruneisen model cannot account for anomalous lattice dynamics at low temperatures. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据