4.5 Article

QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps

期刊

NEUROIMAGE-CLINICAL
卷 34, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nicl.2022.102979

关键词

Multiple sclerosis; Quantitative susceptibility mapping; Chronic active lesions; Convolutional neural network; Radiomic features

资金

  1. National In-stitutes of Health [R01 NS104283]
  2. National Multiple Sclerosis Society [BI-2007-36725]

向作者/读者索取更多资源

This study develops a novel deep neural network QSMRim-Net for automated identification of rim + MS lesions on QSM, achieving high accuracy and correlation.
Background and Purpose: Chronic active multiple sclerosis (MS) lesions are characterized by a paramagnetic rim at the edge of the lesion and are associated with increased disability in patients. Quantitative susceptibility mapping (QSM) is an MRI technique that is sensitive to chronic active lesions, termed rim + lesions on the QSM. We present QSMRim-Net, a data imbalance-aware deep neural network that fuses lesion-level radiomic and convolutional image features for automated identification of rim + lesions on QSM.Methods: QSM and T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI of the brain were collected at 3 T for 172 MS patients. Rim + lesions were manually annotated by two human experts, followed by consensus from a third expert, for a total of 177 rim + and 3986 rim negative (rim-) lesions. Our automated rim + detection algorithm, QSMRim-Net, consists of a two-branch feature extraction network and a synthetic minority oversampling network to classify rim + lesions. The first network branch is for image feature extraction from the QSM and T2-FLAIR, and the second network branch is a fully connected network for QSM lesion-level radiomic feature extraction. The oversampling network is designed to increase classification performance with imbalanced data.Results: On a lesion-level, in a five-fold cross validation framework, the proposed QSMRim-Net detected rim + lesions with a partial area under the receiver operating characteristic curve (pROC AUC) of 0.760, where clin-ically relevant false positive rates of less than 0.1 were considered. The method attained an area under the precision recall curve (PR AUC) of 0.704. QSMRim-Net out-performed other state-of-the-art methods applied to the QSM on both pROC AUC and PR AUC. On a subject-level, comparing the predicted rim + lesion count and the human expert annotated count, QSMRim-Net achieved the lowest mean square error of 0.98 and the highest correlation of 0.89 (95% CI: 0.86, 0.92).Conclusion: This study develops a novel automated deep neural network for rim + MS lesion identification using T2-FLAIR and QSM images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据