4.8 Review

Perovskites for protonic ceramic fuel cells: a review

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 15, 期 6, 页码 2200-2232

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ee00132b

关键词

-

资金

  1. Natural Science Foundation of Anhui Province [2108085MB35]
  2. Scientific Research Project of Education Department of Anhui Province [KJ2021ZD0043]
  3. Australian Research Council [DP200103315, DP200103332]
  4. China Scholarship Council [201808340038]
  5. Australian Research Council [DP200103315, DP200103332] Funding Source: Australian Research Council

向作者/读者索取更多资源

Protonic ceramic fuel cells (PCFCs) are a promising energy technology that can efficiently convert chemical energy into electric power at reduced temperature. The practical use of PCFCs relies on efficient key cell materials, such as electrolyte and electrodes, that meet various requirements. In the past two decades, researchers have extensively explored complex oxides with the ABO(3) perovskite or related structure as key materials in PCFCs due to their flexible composition and versatile properties. The material engineering of perovskite oxides for PCFCs is an important focus of research, with a particular emphasis on compositional engineering to modify the lattice structure, defect structure, and ionic transportation behavior of perovskite oxides.
Protonic ceramic fuel cells (PCFCs), capable of harmonious and efficient conversion of chemical energy into electric power at reduced temperature enabled by fast proton conduction, are promising energy technology, which may radically re-define the whole way of energy conversion in the future, while their practical use is highly dependent on the availability of efficient key cell materials, i.e., electrolyte and electrodes, that should meet several important requirements, such as conductivity, stability, catalytic activity, compatibility, and cost. During the past two decades, complex oxides with the ABO(3) perovskite or related structure have been extensively exploited as key materials in PCFCs, i.e., electrolyte and electrodes, due to their flexible composition with versatile properties. Rational design of perovskite and perovskite-related oxides with robust properties remains a pending research challenge, which makes in-depth understanding of the material engineering in PCFCs a specific focus of research. In this review, recent advances in the material engineering of perovskite oxides for PCFCs are summarized, and regulation strategies are presented, and applications as the electrodes and electrolyte are discussed. Importance is paid to exploiting the general rule of compositional engineering for amending the lattice structure, defect structure, and ionic transportation behavior of perovskite oxides, consequently providing useful guidance on the development of alternative perovskite materials for PCFCs and related fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据