4.7 Article

Effect of tides and source location on nearshore tsunami-induced currents

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
卷 121, 期 12, 页码 8807-8820

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JC012435

关键词

-

资金

  1. California Geological Survey
  2. National Science Foundation
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [1135026] Funding Source: National Science Foundation

向作者/读者索取更多资源

Here we present the results of a numerical modeling study that investigates how event-maximum tsunami-induced currents vary due to the dynamic effects of tides and wave directivity. First, analyses of tide-tsunami interaction are presented in three harbors by coupling the tsunami with the tide, and allowing the initial tsunami wave to arrive at various tidal phases. We find that tsunami-tide interaction can change the event-maximum current speed experienced in a harbor by up to 25% for the events and harbors studied, and we note that this effect is highly site-specific. Second, to evaluate the effect of wave directionality on event-maximum currents, earthquakes sources were placed throughout the Pacific, with magnitudes tuned to create the same maximum near-coast amplitude at the harbor of study. Our analysis also shows that, for the harbor and sources examined, the effect of offshore directionality and tsunami frequency content has a weak effect on the event-maximum currents experienced in the harbor. The more important dependency of event-maximum currents is the near-harbor amplitude of the wave, indicating that event-maximum currents in a harbor from a tsunami generated by a large far-field earthquake may be reasonably well predicted with only information about the predicted local maximum tsunami amplitude. This study was motivated by the hope of constructing a basis for understanding the dynamic effects of tides and wave directivity on current-based tsunami hazards in a coastal zone. The consideration of these aspects is crucial and yet challenging in the modeling of tsunami currents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据