4.6 Article

Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 3, 期 7, 页码 1322-1331

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.6b00331

关键词

chondroitin sulfate; hyaluronic acid; fiber-based techniques; microfludics; polyelectrolyte complexation; tendon

资金

  1. Portuguese funds through FCT Fundacao pars a Ciencia e a Tecnologia of FCT-POPH-FSE [SFRH/BD/96593/2013, SFRH/BPD/103604/2014]
  2. ON.2 under the National Strategic Reference Framework (NSRF) through the European Regional Development Fund (ERDF) [RL3-TECT-NORTE-07-0124-FEDER-000020]
  3. European Research Council [ERC-2012-ADG 20120216-321266]
  4. Fundação para a Ciência e a Tecnologia [SFRH/BD/96593/2013] Funding Source: FCT

向作者/读者索取更多资源

Fiber-based techniques hold great potential toward the development of structures that mimic the architecture of fibrous tissues, such as tendon. Microfluidics and polyelectrolyte complexation are among the most widely used techniques for the fabrication of fibrous structures. In this work, we combined both techniques to generate hydrogel fibers with a fibrillar-like structure. For this, either methacrylated hyaluronic acid (MA-HA) or chondroitin sulfate (MA-CS) were mixed with alginate (ALG), being all negatively charged polysaccharides, combined with chitosan (CHT), which is positively charged, and separately injected into a microfluidic device. Through a continuous injection into a coagulation bath and subsequent photo-cross-linking, we could obtain multi component hydrogel fibers, which exhibited smaller fibrils aligned in parallel, whenever CHT was present. The biological performance was assessed upon encapsulation and further culture of tendon cells. Overall, the reported process did not affect cell viability and cells were also able to maintain their main function of producing extracellular matrix up to 21 days in culture. In summary, we developed a novel class of photo-cross-linkable multicomponent hydrogel fibers than can act as bioactive modulators of cell behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据