4.6 Article

Pulse Electrochemical Driven Rapid Layer-by-Layer Assembly of Polydopamine and Hydroxyapatite Nanofilms via Alternative Redox in Situ Synthesis for Bone Regeneration

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 2, 期 6, 页码 920-928

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.6b00015

关键词

layer-by-layer assembly; electrochemical deposition; polydopamine; hydroxyapatite nanoparticles; drug delivery

资金

  1. 863 Program [2015AA034202]
  2. Key Lab of Advanced Technologies of Materials (MOE)
  3. Southwest Jiaotong University

向作者/读者索取更多资源

Polydopamine (PDA) is an important candidate material for the surface modification of biomedical devices because of its good adhesiveness and biocompatibility. However, PDA nanofilms lack osteoinductivity, limiting their applications in bone tissue engineering. Hydroxyapatite nanoparticles (HA-NPs) are the major component of natural bone, which can be used to effectively enhance the osteoinductivity of PDA nanofilms. Herein, we developed a pulse electrochemical driven layer-by-layer (PED-LbL) assembly process to rapidly deposit HA-NPs and PDA (HA-PDA) multilayer nanofilms. In this process, PDA and HA-NPs are in situ synthesized in two sequential oxidative and reductive pulses in each electrochemical deposition cycle and alternately deposited on the substrate surfaces. PDA assists the in situ synthesis of HA-NPs by working as a template, which avoids the noncontrollable HA nucleation and aggregation. The HA-PDA multilayer nanofilms serve as a tunable reservoir to deliver bone morphogenetic protein-2 and exhibit high osteoinductivity both in vitro and in vivo. This PED-LbL assembly process breaks the limitation of traditional LbL assembly, allowing not only the rapid assembly of oppositely charged polyelectrolytes but also the in situ synthesis of organic/inorganic NPs that are uniformly incorporated in the nanofilm. It has broad applications in the preparation of versatile surface coatings on various biomedical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据