4.7 Article

Multiple branching rupture of the 2009 Tonga-Samoa earthquake

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
卷 121, 期 8, 页码 5809-5827

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JB012945

关键词

back-projection; subduction zone; earthquake; seismology; earthquake triggering; fault interactions

资金

  1. National Science Foundation [EAR-1111111]
  2. Directorate For Geosciences
  3. Division Of Earth Sciences [1215769] Funding Source: National Science Foundation
  4. Directorate For Geosciences
  5. Division Of Earth Sciences [1620251] Funding Source: National Science Foundation

向作者/读者索取更多资源

Several source models have been proposed to explain the enigmatic 2009 Tonga-Samoa earthquake. The long-period data require a composite source model and can be fit with a normal-faulting subevent followed by one or more reverse-faulting subevents. The short-period data, in contrast, indicate a more compact rupture pattern around the epicenter. The lack of a unified source model reflects the complexity of the event. We analyze the spatiotemporal evolution of this earthquake with P wave back-projection from globally distributed stations in different frequency bands (low frequency: 0.05-0.2Hz, high frequency: 0.2-2Hz) and a multiple moment tensor inversion. The rupture propagation revealed by back-projection exhibits frequency-dependent behavior, with two branches of high-frequency-enriched bilateral rupture around the epicenter and a high-frequency-deficient rupture branch at the subduction interface. A composite source model with one M(w)8.0 normal-faulting earthquake east of the trench axis (seaward) followed by one M(w)8.1 reverse-faulting earthquake along the subduction interface west of the trench axis (landward) can explain the very long period data (200 approximate to 500s). Combined with high-resolution swath bathymetry data, the back-projection images show that the azimuth of rupture branches east of the trench axis were controlled by the geometry of bending-related faults on the Pacific plate and that the rupture branch west of the trench axis may correlate with the along-strike fore-arc segmentation. The rupture along the subduction interface was triggered by the seaward rupture and a partially subducted normal fault may have played a key role in facilitating the triggering. The apparent normal-reverse faulting interactions pose a higher seismic risk to this region than their individual strands at the northernmost corner of the Tonga subduction zone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据