4.5 Article

Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JG003067

关键词

permafrost; degradation; lignin phenols; wax lipids; sorting; density fractionation

资金

  1. Knut and Alice Wallenberg Foundation
  2. Headquarters of the Far Eastern Branch of the Russian Academy of Sciences
  3. Swedish Research Council [621-2004-4039, 621-2007-4631]
  4. U.S. National Oceanic and Atmospheric Administration (OAR Climate Program Office) [NA08OAR4600758]
  5. Russian Foundation of Basic Research RFFI [13-05-12041-ofi, 13-05-12028-ofi]
  6. Swedish Polar Research Secretariat
  7. Nordic Council of Ministers
  8. U.S. National Science Foundation [OPP ARC1023281, 0909546]
  9. Swedish Royal Academy of Sciences through Knut and Alice Wallenberg Foundation
  10. Russian Government [14.Z50.31.0012]
  11. EU [PIEF-GA-2011-300259]

向作者/读者索取更多资源

This study seeks an improved understanding of how matrix association affects the redistribution and degradation of terrigenous organic carbon (TerrOC) during cross-shelf transport in the Siberian margin. Sediments were collected at increasing distance from two river outlets (Lena and Kolyma Rivers) and one coastal region affected by erosion. Samples were fractionated according to density, size, and settling velocity. The chemical composition in each fraction was characterized using elemental analyses and terrigenous biomarkers. In addition, a dual-carbon-isotope mixing model (C-13 and C-14) was used to quantify the relative TerrOC contributions from active layer (Topsoil) and Pleistocene Ice Complex Deposits (ICD). Results indicate that physical properties of particles exert first-order control on the redistribution of different TerrOC pools. Because of its coarse nature, plant debris is hydraulically retained in the coastal region. With increasing distance from the coast, the OC is mainly associated with fine/ultrafine mineral particles. Furthermore, biomarkers indicate that the selective transport of fine-grained sediment results in mobilizing high-molecular weight (HMW) lipid-rich, diagenetically altered TerrOC while lignin-rich, less degraded TerrOC is retained near the coast. The loading (mu g/m(2)) of lignin and HMW wax lipids on the fine/ultrafine fraction drastically decreases with increasing distance from the coast (98% and 90%, respectively), which indicates extensive degradation during cross-shelf transport. Topsoil-C degrades more readily (903.5%) compared to the ICD-C (6011%) during transport. Altogether, our results indicate that TerrOC is highly reactive and its accelerated remobilization from thawing permafrost followed by cross-shelf transport will likely represent a positive feedback to climate warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据