4.6 Article

Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 121, 期 23, 页码 14159-14174

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JD025616

关键词

-

资金

  1. National Science Foundation
  2. National Science Foundation (NSF)
  3. Office of Science of the U.S. Department of Energy
  4. NSF

向作者/读者索取更多资源

Chemical transport associated with the dynamics of the Asian summer monsoon (ASM) system is investigated using model output from the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model run in specified dynamics mode. The 3-Dday-to-day behavior of modeled carbon monoxide is analyzed together with dynamical fields and transport boundaries to identify preferred locations of uplifting from the boundary layer, the role of subseasonal- scale dynamics in the upper troposphere and lower stratosphere (UTLS), and the relationship of ASM transport and the stratospheric residual circulation. The model simulation of CO shows the intraseasonal east-west oscillation of the anticyclone may play an essential role in transporting convectively pumped boundary layer pollutants in the UTLS. A statistical analysis of 11 year CO also shows that the southern flank of the Tibetan plateau is a preferred location for boundary layer tracers to be lofted to the tropopause region. The vertical structure of a model tracer (E90) further shows that the rapid ASM vertical transport is only effective up to the tropopause level (around 400 K). The efficiency of continued vertical transport into the deep stratosphere is limited by the slow ascent associated with the zonal- mean residual circulation in the lower stratosphere during northern summer. Quasi-isentropic transport near the 400 K potential temperature level is likely the most effective process for ASM anticyclone air to enter the stratosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据