4.6 Article

Detection of trends in surface ozone in the presence of climate variability

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 121, 期 10, 页码 6112-6129

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JD024397

关键词

-

资金

  1. NSF [AGS-1419818]
  2. EPA STAR grant [83520601]
  3. Directorate For Geosciences
  4. Div Atmospheric & Geospace Sciences [1419818] Funding Source: National Science Foundation

向作者/读者索取更多资源

Trends in trace atmospheric constituents can be driven not also by trends in their (precursor) emissions but also by trends in meteorology. Here we use ground-level ozone as an example to highlight the extent to which unforced, low-frequency climate variability can drive multidecadal trends. Using output from six experiments of the Geophysical Fluid Dynamics Laboratory chemistry-climate model (CM3), we demonstrate that 20 year trends in surface ozone driven by climate variability alone can be as large as those forced by changes in ozone precursor emissions or by anthropogenic climate change. We highlight regions and seasons where surface ozone is strongly influenced by climate variability and thus where a given forced trend may be more difficult to detect. A corollary is that this approach identifies regions and seasons of low variability, where measurement sites may be most effectively deployed to detect a particular trend driven by changing precursor emissions. We find that the representative concentration pathways 4.5 (RCP4.5) and RCP8.5 forced surface ozone trends in most locations emerge over background variability during the first half of the 21st century. Ozone trends are found to respond mostly to changes in emissions of ozone precursors and unforced climate variability, with a comparatively small impact from anthropogenic climate change. Thus, attempts to attribute observed trends to regional emissions changes require consideration of internal climate variability, particularly for short record lengths and small forced trends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据