4.6 Article

Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 121, 期 5, 页码 2393-2415

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JD024406

关键词

LAI; WRF; CMAQ; FPAR; MODIS; PX LSM

向作者/读者索取更多资源

Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM). Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer processes resulting in improved 2m temperature (T) and mixing ratio (Q), 10m wind speed, and surface ozone simulations across the domain compared to the previous version for a period around August 2006. Yearlong meteorology simulations with the updated system demonstrate that MODIS input helps reduce bias of the 2m Q estimation during the growing season from April to September. Improvements follow the green-up in the southeast from April and move toward the west and north through August. From October to March, MODIS input does not have much influence on the system because vegetation is not as active. The greatest effects of MODIS input include more accurate phenology, better representation of leaf area index (LAI) for various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in the western drylands. Despite the improved meteorology, MODIS input causes higher bias for the surface O-3 simulation in April, August, and October in areas where MODIS LAI is much less than the base LAI. Thus, improvements may be needed in the CMAQ dry deposition model for low LAI areas where deposition on the soil surface becomes important.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据