4.6 Article

Predicting disease progression in amyotrophic lateral sclerosis

期刊

出版社

WILEY
DOI: 10.1002/acn3.348

关键词

-

向作者/读者索取更多资源

Objective: It is essential to develop predictive algorithms for Amyotrophic Lateral Sclerosis (ALS) disease progression to allow for efficient clinical trials and patient care. The best existing predictive models rely on several months of baseline data and have only been validated in clinical trial research datasets. We asked whether a model developed using clinical research patient data could be applied to the broader ALS population typically seen at a tertiary care ALS clinic. Methods: Based on the PRO-ACT ALS database, we developed random forest (RF), pre-slope, and generalized linear (GLM) models to test whether accurate, unbiased models could be created using only baseline data. Secondly, we tested whether a model could be validated with a clinical patient dataset to demonstrate broader applicability. Results: We found that a random forest model using only baseline data could accurately predict disease progression for a clinical trial research dataset as well as a population of patients being treated at a tertiary care clinic. The RF Model outperformed a pre-slope model and was similar to a GLM model in terms of root mean square deviation at early time points. At later time points, the RF Model was far superior to either model. Finally, we found that only the RF Model was unbiased and was less subject to overfitting than either of the other two models when applied to a clinic population. Interpretation: We conclude that the RF Model delivers superior predictions of ALS disease progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据