4.7 Article

Smart and regeneratable Xanthan gum hydrogel adsorbents for selective removal of cationic dyes

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jece.2022.107620

关键词

Hydrogels; Xanthan gum; Selective adsorption; Methylene blue; Regeneration; Recovery

资金

  1. DAAD-NRF Kenya
  2. University of Siegen

向作者/读者索取更多资源

Poly-anionic Xanthan gum-based hydrogel exhibits high adsorption capacity, selectivity, and reusability for the removal of cationic dye pollutants from wastewater.
Poly-anionic Xanthan gum-based hydrogels were synthesized and used as potent adsorbents for the removal of dye pollutants from waste water effluents. The adsorbents were synthesized by esterification of Xanthan gum with maleic anhydride, followed by thiol-ene cross-linking chemistry with 2,2'-(ethylenedioxy)diethanethiol. Methylene blue was used as model cationic dye to mimic dye polluted water. The adsorption kinetics of methylene blue by the Xanthan gum-based hydrogels was modeled by pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The experimental adsorption data at 25 degrees C was modeled by the Langmuir isotherm. The effects of adsorption operation parameters such as the initial dye concentration, pH, ionic strength, and adsorbent dose were also investigated. The pseudo-second-order and Langmuir models were found to be the most appropriate models for the description of the adsorption kinetics and isotherm data, respectively. The Xanthan gum-based hydrogel exhibited a high adsorption capacity of up to q(max) = 435 mg/g (1.35 mmol/g) towards methylene blue. The incorporation of carboxylic acid groups in the Xanthan gum backbone afforded appreciable charge density at pH > 5, which can effectively facilitate the binding of cationic dye molecules. Consequently, the uptake mechanism of methylene blue by the polyanionic Xanthan hydrogel is attributed mainly to the electrostatic interactions. The Xanthan gum-based hydrogel had a remarkable selectivity for the cationic dye in binary and ternary mixtures of methylene blue with methyl orange or sunset yellow FCF. Finally, the hydrogel showed a potential to be re-used for at least for twenty times after regeneration and maintaining over 95% efficiency dye removal as well as recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据