4.7 Article

Lattice Boltzmann model for capillary interactions between particles at a liquid-vapor interface under gravity

期刊

PHYSICAL REVIEW E
卷 105, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.105.045316

关键词

-

资金

  1. JSPS KAKENHI [JP20K15075, JP18H03690]
  2. Information Center of Particle Technology, Japan

向作者/读者索取更多资源

A computational technique based on the lattice Boltzmann method (LBM) has been developed to simulate wettable particles adsorbed to a liquid-vapor interface under gravity. The technique accurately reproduces capillary interactions between the particles and is in good agreement with theoretical estimations.
A computational technique based on the lattice Boltzmann method (LBM) is developed to simulate the wettable particles adsorbed to a liquid-vapor interface under gravity. The proposed technique combines the improved smoothed-profile LBM for the treatment of moving solid particles in a fluid and the free-energy LBM for the description of a liquid-vapor system. Five benchmark two-dimensional problems are examined: (A) a stationary liquid drop in the vapor phase; a wettable particle adsorbed to a liquid-vapor interface in (B) the absence and (C) the presence of gravity; (D) two freely moving particles at a liquid-vapor interface in the presence of gravity (i.e., capillary flotation forces); and (E) two vertically constrained particles at a liquid-vapor interface (i.e., capillary immersion forces). The simulation results are in good quantitative agreement with theoretical estimations, demonstrating that the proposed technique can reproduce the capillary interactions between wettable particles at a liquid-vapor interface under gravity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据