4.7 Article

Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites

期刊

MATERIALS & DESIGN
卷 105, 期 -, 页码 323-332

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2016.05.075

关键词

Kevlar; Basalt; Low velocity impact; 3D composites; Polypropylene

向作者/读者索取更多资源

Experimental and numerical investigations are carried out to determine the low velocity impact (LVI) response of three different polypropylene (PP) composites. Three dimensional (3D) angle-interlock fabrics with Kevlar, basalt and a hybrid combination of both are produced. 3D composites are manufactured with these three fabrics using vacuum-assisted compression molding process with PP resin. LVI tests are conducted using a drop-weight impact equipment at the energy level of 240 J. The LVI response of the three 3D-PP composites is compared in terms of peak force, energy absorption and damage modes. The experimental results indicate that the basalt 3D composites showed 6.62-13.73% higher peak force and H3D composites absorbed 7.67-48.49% more energy than the remaining composites. Results indicate that there is a considerable enhancement in the energy absorbing capability of hybrid composites as compared to Kevlar/PP and basalt/PP composites. Numerical simulations are carried out using the commercial finite element (FE) code ABAQUS/Explicit. A user-defined material subroutine (VUMAT) based on Chang-Chang linear orthotropic damage model, is implemented into the FE code. Good agreement between experimental and numerical simulations is achieved in terms of impact response characteristics. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据