4.6 Article

Rate-dependent deformation of amorphous sulfide glass electrolytes for solid-state batteries

期刊

CELL REPORTS PHYSICAL SCIENCE
卷 3, 期 4, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.xcrp.2022.100845

关键词

-

资金

  1. SK Innovation and the National Science Foundation [DMR-2124775]

向作者/读者索取更多资源

Sulfide glasses as electrolytes for solid-state batteries have significant mechanical behavior dominated by viscoplasticity, offering a new dimension for designing next-generation batteries.
Sulfide glasses are emerging as potential electrolytes for solid-state batteries. The mechanical behavior of these materials can significantly impact cell performance, and it is thus imperative to understand their deformation and fracture mechanisms. Previous work mainly reports properties obtained under quasi-static loading conditions, but very little is known about deformation under dynamic conditions. The current investigation shows that the sulfide glass mechanical behavior is dominated by viscoplasticity, differing substantially from polycrystalline oxide and sulfide solid electrolytes. Finite element modeling indicates that the sulfide glass stiffness is high enough to maintain good contact with softer lithium metal electrodes under moderate stack pressures. The observed viscoplasticity also implies that battery operating conditions will play an important role in electro-chemo-mechanical processes that are associated with dendritic lithium penetration. In general, the rate-dependent mechanical behavior of the sulfide glass electrolytes documented here offers a new dimension for designing next -generation all-solid-state batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据