4.6 Article

Autonomous Dissipative Maxwell's Demon in a Diamond Spin Qutrit

期刊

PRX QUANTUM
卷 3, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PRXQuantum.3.020329

关键词

-

资金

  1. MISTI Global Seed Funds MIT-FVG Collaboration Grant
  2. European Union [820419]
  3. Blanceflor Foundation
  4. CNRFOE-LENS-2020

向作者/读者索取更多资源

Engineered dynamical maps have shown technological applications and potential in quantum thermodynamic processes. In this study, we experimentally realized an autonomous feedback process with tunable dissipative strength by controlling the nitrogen-vacancy center. The efficacy of the feedback process was quantified using a generalized Sagawa-Ueda-Tasaki relation for dissipative dynamics.
Engineered dynamical maps combining coherent and dissipative transformations of quantum states with quantum measurements have demonstrated a number of technological applications, and promise to be a crucial tool in quantum thermodynamic processes. Here we exploit the control on the effective open spin qutrit dynamics of a nitrogen-vacancy center to experimentally realize an autonomous feedback process (Maxwell's demon) with tunable dissipative strength. The feedback is enabled by random measurement events that condition the subsequent dissipative evolution of the qutrit. The efficacy of the autonomous Maxwell's demon is quantified by means of a generalized Sagawa-Ueda-Tasaki relation for dissipative dynamics. To achieve this, we experimentally characterize the fluctuations of the energy exchanged between the system and its the environment. This opens the way to the implementation of a new class of Maxwell's demons, which could be useful for quantum sensing and quantum thermodynamic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据