3.8 Proceedings Paper

Effect of micro tool-tips in electrochemical micromachining

期刊

MATERIALS TODAY-PROCEEDINGS
卷 56, 期 -, 页码 1335-1340

出版社

ELSEVIER
DOI: 10.1016/j.matpr.2021.11.329

关键词

Micro-ECM; Multiphysics simulation; Current density; Tooltip

向作者/读者索取更多资源

This paper investigates the effects of two different tool tips in the electrochemical micromachining process. By simulating and modeling in COMSOL Multiphysics (R) software, it is observed that the ball end provides better machining results with a more uniform current distribution and more effective removal of debris particles from the interelectrode gap.
Electrochemical micromachining (EMM) is an anodic dissolution process which governs by Faraday's laws of electrolysis. The accuracy of the machining depends on the tool design as the streamline of current density formed in between the tool and the workpiece (electrodes) depends on it. In the present paper, two different tool-tips namely flat and ball end are considered for investigation. The complete set-up is modeled in the COMSOL Multiphysics (R) software coupling electrochemistry and fluid flow. The current density develops during EMM for both the tool-tips are used for analysis. The tool material is tungsten and work-piece material is stainless steel. Keeping parametric conditions constant for the two, simulation was performed. It was observed that more uniform current developed for ball end compared to flat end. It leads to a decrease in overcut of 120 mm in ball tip than the flat end. The fluid flow shows flushing of debris particles from the interelectrode gap is more effective in ball end than the flat end tooltip. Copyright (C) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the First International Conference on Advances in Mechanical Engineering and Material Science

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据