4.6 Article

Electric fields and substrates dramatically accelerate spin relaxation in graphene

期刊

PHYSICAL REVIEW B
卷 105, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.105.115122

关键词

-

资金

  1. National Science Foundation [DMR-1956015]
  2. American Association of University Women (AAUW) fellowship
  3. Air Force Office of Scientific Research [FA9550-YR-1-XYZQ]

向作者/读者索取更多资源

This study uses first-principles density-matrix dynamics simulations to investigate the effect of electric fields and substrates on spin relaxation in graphene. The results show that the interaction with electric fields and substrates significantly enhances spin relaxation through scattering with phonons. The findings have important implications for the development of graphene-based spin technologies at room temperature.
Electrons in graphene are theoretically expected to retain spin states much longer than most materials, making graphene a promising platform for spintronics and quantum information technologies. Here, we use first-principles density-matrix (FPDM) dynamics simulations to show that interaction with electric fields and substrates strongly enhances spin relaxation through scattering with phonons. Consequently, the relaxation time at room temperature reduces from microseconds in free-standing graphene to nanoseconds in graphene on the hexagonal boron nitride (hBN) substrate, which is the order of magnitude typically measured in experiments. Further, inversion symmetry breaking by hBN introduces a stronger asymmetry in electron and hole spin lifetimes than predicted by the conventional D???yakonov-Perel??? (DP) model for spin relaxation. Deviations from the conventional DP model are stronger for in-plane spin relaxation, resulting in out-of-plane to in-plane lifetime ratios much greater than 1/2 with a maximum close to the Dirac point. These FPDM results, independent of symmetry-specific assumptions or material-dependent parameters, also validate recent modifications of the DP model to explain such deviations. Overall, our results indicate that spin-phonon relaxation in the presence of substrates may be more important in graphene than typically assumed, requiring consideration for graphenebased spin technologies at room temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据