4.4 Article

Enhanced photocatalytic treatment using plasmonic Ag@Ag3PO4/Ag@AgCl nanophotocatalyst for simultaneous degradation of multiple parabens and UV-filters in various aquatic environments under visible light irradiation

期刊

PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
卷 21, 期 9, 页码 1601-1616

出版社

SPRINGERNATURE
DOI: 10.1007/s43630-022-00243-x

关键词

Photodegradation; Nanophotocatalyst; Parabens; UV filters; Optimization; SPE-GC-MS

资金

  1. Research Council of Chemistry and Chemical Engineering Research Center (CCERCI)

向作者/读者索取更多资源

This study focused on the simultaneous photocatalytic degradation of different parabens and UV filters using a novel double plasmonic nanophotocatalyst. The nanophotocatalyst showed superior activity compared to individual nanoparticles due to the presence of two simultaneous surface plasmon resonances and a hetero-junction structure. Superoxide radicals were identified as the key reactive species. The degradation process was further investigated and optimized in different water matrices.
In this study, simultaneous photocatalytic degradation of different parabens (methyl-, ethyl-, propyl-, and butyl paraben) and UV filters (benzophenone-3, 4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxy-cinnamate and octocrylene) in water matrices was performed under visible light irradiation using novel double plasmonic Ag@Ag3PO4/Ag@AgCl nanophotocatalyst, synthesized by an easy and fast photochemical conversion and photo-reduction. It was found that the nanophotocatalyst with appropriate mole ratio of Ag@Ag3PO4/Ag@AgCl (1:3) showed superior photocatalytic activity than individual plasmonic nanoparticles. This is because there are two simultaneous surface plasmon resonances (SPR) generated by the metallic Ag nanoparticles, in addition to the hetero-junction structure formed at the interface between Ag@Ag3PO4 and Ag@AgCl. The structures of the synthesized photocatalysts were characterized, and the principal reactive oxygen species in the photocatalytic process were identified via a trapping experiment, confirming superoxide radicals (center dot O-2(-)) as the key reactive species of the photocatalytic system. The process of photodegradation of the target pollutants was monitored using an optimized method that incorporated solid-phase extraction in combination with gas chromatography-mass spectrometry. The simultaneous photodegradation process was modeled and optimized using central composite design. The kinetic study revealed that the degradation process over Ag@Ag3PO4(30%)/Ag@AgCl(70%) under visible light followed a pseudo-first-order kinetic model. The simultaneous degradation of target compounds was further investigated in sewage treatment plant effluent as well as tap water. It was found that the matrix constituents can reduce the photodegradation efficiency, especially in the case of highly contaminated samples. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据