4.6 Article

Practical Zn anodes enabled by a Ti-MOF-derived coating for aqueous batteries

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Multidisciplinary Sciences

Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries

Yujing Liu et al.

Summary: In this study, self-assembled monolayers (SAMs) were utilized to control electrolyte degradation and solid-electrolyte interphase (SEI) formation in lithium metal batteries (LMBs), resulting in improved cycling performance and lifespan.

SCIENCE (2022)

Article Chemistry, Multidisciplinary

Nitrogen-Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Zn-Metal Anodes

Yinxiang Zeng et al.

Summary: The study developed a 3D multifunctional host consisting of N-doped carbon fibers embedded with Cu nanoboxes for stable Zn-metal anodes. The host's structure alleviates volume change during cycling and enables uniform and dense Zn deposition, resulting in high Coulombic efficiency and long cycling life for the electrode.

ADVANCED MATERIALS (2022)

Article Multidisciplinary Sciences

Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes

Huan Yu et al.

Summary: We developed a three-dimensional hybrid fiber host for high-performance Zn metal batteries, which enables homogeneous Zn deposition on the interior and exterior surfaces of the hollow fibers.

SCIENCE ADVANCES (2022)

Article Nanoscience & Nanotechnology

Driving the Interfacial Ion-Transfer Kinetics by Mesoporous TiO2 Spheres for High-Performance Aqueous Zn-Ion Batteries

Xiangyang Zhou et al.

Summary: Coating mesoporous TiO2 on Zn foil can reduce interface resistance and improve performance of aqueous zinc-ion batteries (ZIBs), enabling faster ion transfer and longer cycling stability. The analysis of ion-transfer kinetics at the interface provides valuable insights for the study of metal anodes.

ACS APPLIED MATERIALS & INTERFACES (2021)

Review Chemistry, Multidisciplinary

Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery

Fei Wang et al.

Summary: This review systematically summarizes and analyzes the advantages and challenges of various prelithiation methods, providing enlightenment for the further development of each prelithiation strategy towards commercialization, thus facilitating the practical application of high-specific-capacity anodes in the next-generation high-energy-density lithium-ion batteries.

ACS NANO (2021)

Article Chemistry, Multidisciplinary

Fast-Charging and Ultrahigh-Capacity Zinc Metal Anode for High-Performance Aqueous Zinc-Ion Batteries

Penghui Cao et al.

Summary: By utilizing a zinc phosphorus solid solution alloy coated on zinc foil as the anode, the study achieved successful cycling at high current density and large areal capacity, demonstrating the potential for large-scale application of aqueous zinc-ion batteries in high-power devices.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes

Longtao Ma et al.

Summary: By using a ZnF2 solid ion conductor to isolate Zn metal, the hydrogen evolution in Zn metal batteries has been significantly reduced, leading to improved performance and stability of the batteries.

ADVANCED MATERIALS (2021)

Review Chemistry, Physical

Electrolyte Strategies toward Better Zinc-Ion Batteries

Cunxin Liu et al.

Summary: With the increasing demand for large-scale energy storage, high safety and low cost rechargeable zinc-ion batteries are considered as potential substitutes for lithium-ion batteries. However, fundamental issues hinder the development of zinc-based energy storage systems. The electrolyte plays a crucial role in ensuring the compatibility and cycling of battery components, and strategies to address issues such as cathode dissolution, zinc dendrites, corrosion, and hydrogen evolution are discussed.

ACS ENERGY LETTERS (2021)

Article Engineering, Environmental

Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life

Luong Trung Hieu et al.

Summary: This study successfully enhanced the performance of aqueous zinc ion batteries by coating the Zn anode with a thin protective layer of beta-PVDF, resulting in reduced overpotential and improved cyclic stability.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery

Ziyi Cao et al.

Summary: By using a spin-coating method to uniformly coat Zn with a commercial cyanoacrylate adhesive, a stable artificial solid/electrolyte interphase is formed to protect the Zn surface and regulate Zn ion nucleation barriers, leading to improved cycling stability and high Coulombic efficiency.

ENERGY STORAGE MATERIALS (2021)

Review Chemistry, Multidisciplinary

Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries

Xiao Wang et al.

Summary: This review discusses the key challenges of rechargeable aqueous zinc-ion batteries, analyzing the structural features and electrochemical properties of different cathode materials, and proposing various electrode design strategies to guide future research activities. The focus is mainly on achieving high energy density and durable cathode materials.

ACS NANO (2021)

Article Chemistry, Multidisciplinary

Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer†

Xiaotan Zhang et al.

Summary: The CNG membrane, serving as a desolvation layer, effectively prevents water molecules from contacting the zinc anode, thereby delaying water-induced corrosion reactions and promoting redirected zinc deposition through deanionization shock. The flexible and toughened nature of the CNG membrane allows it to withstand strong forces and accommodate surface fluctuations of the zinc anode during plating/stripping processes, resulting in enhanced Coulombic efficiency and extended cycle life.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Physical

Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries

Recep Yuksel et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Multidisciplinary

Functionalized Zn@ZnO Hexagonal Pyramid Array for Dendrite-Free and Ultrastable Zinc Metal Anodes

Ji Young Kim et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes

Chao Li et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries

Junnan Hao et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Zeolitic Imidazolate Frameworks as Zn2+Modulation Layers to Enable Dendrite-Free Zn Anodes

Xiaoqing Liu et al.

ADVANCED SCIENCE (2020)

Article Chemistry, Multidisciplinary

A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems

Daliang Han et al.

Article Multidisciplinary Sciences

Revealing the role of crystal orientation of protective layers for stable zinc anode

Qi Zhang et al.

NATURE COMMUNICATIONS (2020)

Review Materials Science, Multidisciplinary

Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries

Canpeng Li et al.

ENERGY & ENVIRONMENTAL MATERIALS (2020)

Article Chemistry, Physical

Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries

Huibing He et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes

Xuesong Xie et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Nanoscience & Nanotechnology

Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nanowetting Effect

Mingqiang Liu et al.

ACS APPLIED MATERIALS & INTERFACES (2019)

Article Chemistry, Physical

Indium-Doped TiO2 Photocatalysts with High-Temperature Anatase Stability

Vignesh Kumaravel et al.

JOURNAL OF PHYSICAL CHEMISTRY C (2019)

Article Chemistry, Multidisciplinary

The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive

Qi Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

Issues and opportunities facing aqueous zinc-ion batteries

Boya Tang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface

Dipan Kundu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Multidisciplinary

Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode

Kangning Zhao et al.

ADVANCED MATERIALS INTERFACES (2018)

Article Materials Science, Ceramics

Potency of commercial TiO2-P25 nanoparticles to form stainless steel protective coating

Mansour Pourmoalem et al.

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY (2017)

Review Materials Science, Multidisciplinary

Nanoengineering Titania for High Rate Lithium Storage: A Review

Chunhai Jiang et al.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2013)

Review Multidisciplinary Sciences

Issues and challenges facing rechargeable lithium batteries

JM Tarascon et al.

NATURE (2001)