4.1 Review

In vivo brain MR spectroscopy in gliomas: clinical and pre-clinical chances

期刊

CLINICAL AND TRANSLATIONAL IMAGING
卷 10, 期 5, 页码 495-515

出版社

SPRINGER-VERLAG ITALIA SRL
DOI: 10.1007/s40336-022-00502-y

关键词

Glioma; Brain MR spectroscopy; In vivo; Clinical; Pre-clinical

资金

  1. Italian Ministry of Health

向作者/读者索取更多资源

This review focuses on the methodology and analysis techniques in proton MRS for glioma diagnosis and prognostic biomarkers. The potential role of MRS in non-invasive assessment of patients and monitoring treatment responses and prognosis is highlighted.
Purpose Gliomas, the most common primary brain tumours, have recently been re-classified incorporating molecular aspects with important clinical, prognostic, and predictive implications. Concurrently, the reprogramming of metabolism, altering intracellular and extracellular metabolites affecting gene expression, differentiation, and the tumour microenvironment, is increasingly being studied, and alterations in metabolic pathways are becoming hallmarks of cancer. Magnetic resonance spectroscopy (MRS) is a complementary, non-invasive technique capable of quantifying multiple metabolites. The aim of this review focuses on the methodology and analysis techniques in proton MRS (1H MRS), including a brief look at X-nuclei MRS, and on its perspectives for diagnostic and prognostic biomarkers in gliomas in both clinical practice and preclinical research. Methods PubMed literature research was performed cross-linking the following key words: glioma, MRS, brain, in-vivo, human, animal model, clinical, pre-clinical, techniques, sequences, 1H, X-nuclei, Artificial Intelligence (AI), hyperpolarization. Results We selected clinical works (n = 51), preclinical studies (n = 35) and AI MRS application papers (n = 15) published within the last two decades. The methodological papers (n = 62) were taken into account since the technique first description. Conclusions Given the development of treatments targeting specific cancer metabolic pathways, MRS could play a key role in allowing non-invasive assessment for patient diagnosis and stratification, predicting and monitoring treatment responses and prognosis. The characterization of gliomas through MRS will benefit of a wide synergy among scientists and clinicians of different specialties within the context of new translational competences. Head coils, MRI hardware and post-processing analysis progress, advances in research, experts' consensus recommendations and specific professionalizing programs will make the technique increasingly trustworthy, responsive, accessible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据