4.8 Article

Statistical QoS Control of Network Coded Multipath Routing in Large Cognitive Machine-to-Machine Networks

期刊

IEEE INTERNET OF THINGS JOURNAL
卷 3, 期 4, 页码 619-627

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JIOT.2015.2478435

关键词

Cognitive radio; cooperative relay; effective capacity; machine-to-machine (M2M) communications; network coded multipath routing; statistical quality-of-service (QoS) control

向作者/读者索取更多资源

Machine-to-machine (M2M) communication enables many applications such as smart grid, vehicular safety, and health care among many others. To achieve ubiquitous data transportation among objects and the surrounding environment, deploying spectrum sharing M2M communications with existing wireless networks is a must. A general large-scale cognitive M2M network (CM2MN), adopting cognitive radio technology, consists of multiradio systems, the primary system (PS), and secondary system(s) with tremendous cooperative cognitive machines, under heterogeneous wireless architecture. For these CM2MNs, due to dynamic spectrum access (DSA) nature, there exists possibly unidirectional opportunistic wireless fading links and thus traditional flow control mechanisms at link level do not fit anymore. Furthermore, effective end-to-end quality-of-service (QoS) control is still required to provide a reliable transportation for such multihop CM2M communications. Facing the above challenges, we propose a novel statistical QoS control mechanism through cooperative relaying, realizing virtual multiple-input and multipleoutput (MIMO) communications at session level. In particular, a probabilistic network coded routing algorithm and the statistical QoS guarantee are first proposed to coordinate and cooperate tremendous machines. Next, based on the proposed guarantee and routing algorithm, the statistical QoS control mechanism is designed to enable MIMO communications for the session traffic. Specifically, the diversity mode is used to deal with PS's opportunistic nature and wireless fading, and the spatial multiplexing mode is employed to obtain the maximum end-to-end throughput. Simulation results confirm that under our control solution, the great improvements of end-to-end delay violation probability are obtained, thus practically facilitating network coded multipath routing in large CM2MNs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据