4.6 Article

Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data

期刊

LAND
卷 11, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/land11050595

关键词

Land Use Land Cover (LULC); Maximum Likelihood Classification (MLC); Climate change; NDVI; Remote sensing and GIS

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA19090130]
  2. National Natural Science Foundation of China [42071321]

向作者/读者索取更多资源

This study utilized remote sensing and GIS techniques with MLC to examine LULC changes over 40 years in the Sahiwal District, showing an increase in built-up areas and decrease in vegetation areas. Survey results indicate that the majority of farmers believe climate change has impacted agriculture, with a decrease in rainfall intensity.
Climate change is likely to have serious social, economic, and environmental impacts on farmers whose subsistence depends on nature. Land Use Land Cover (LULC) changes were examined as a significant tool for assessing changes at diverse temporal and spatial scales. Normalized Difference Vegetation Index (NDVI) has the potential ability to signify the vegetation structures of various eco-regions and provide valuable information as a remote sensing tool in studying vegetation phenology cycles. In this study, we used remote sensing and Geographical Information System (GIS) techniques with Maximum Likelihood Classification (MLC) to identify the LULC changes for 40 years in the Sahiwal District. Later, we conducted 120 questionnaires administered to local farmers which were used to correlate climate changes with NDVI. The LULC maps were prepared using MLC and training sites for the years 1981, 2001, and 2021. Regression analysis (R-2) was performed to identify the relationship between temperature and vegetation cover (NDVI) in the study area. Results indicate that the build-up area was increased from 7203.76 ha (2.25%) to 31,081.3 ha (9.70%), while the vegetation area decreased by 14,427.1 ha (4.5%) from 1981 to 2021 in Sahiwal District. The mean NDVI values showed that overall NDVI values decreased from 0.24 to 0.20 from 1981 to 2021. Almost 78% of farmers stated that the climate has been changing during the last few years, 72% of farmers stated that climate change had affected agriculture, and 53% of farmers thought that rainfall intensity had also decreased. The R-2 tendency showed that temperature and NDVI were negatively connected to each other. This study will integrate and apply the best and most suitable methods, tools, and approaches for equitable local adaptation and governance of agricultural systems in changing climate conditions. Therefore, this research outcome will also meaningfully help policymakers and urban planners for sustainable LULC management and strategies at the local level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据