4.7 Review

Customizable molecular recognition: advancements in design, synthesis, and application of molecularly imprinted polymers

期刊

POLYMER CHEMISTRY
卷 13, 期 23, 页码 3387-3411

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1py01472b

关键词

-

向作者/读者索取更多资源

Molecularly imprinted polymers (MIPs) combine the complexity of receptor proteins with the tunability of synthetic research, and have potential in the recognition of target molecules. The aim of MIP research is to achieve similar recognition accuracy as receptor proteins while tailoring functional properties for advanced applications.
Molecularly imprinted polymers (MIPs) are where the complexity of receptor proteins meets the tunability of synthetic research. Receptor proteins, such as enzymes or antibodies, have functional cavities that act as docking platforms by recognizing and binding to complementary ligands. Once bound, a receptor-ligand complex may generate any multitude of cellular responses, including the regulation, uptake, and/or release of certain hormones, neurotransmitters, inorganic minerals, antigens, enzymes, and other molecules within an organism. Just like receptor proteins, MIPs are polymers with carefully selected functional groups that are spacially arranged to recognize target molecules. MIPs are generated by templating a functionalized polymer with a molecule, leaving a cavity that is complementary to the molecule upon removal. That cavity then has an affinity for the molecule that was templeted for later rebinding. The aim of MIP research is to recognize a desired target molecule with the precision of receptor proteins, and to maintain specificity and sensitivity towards the target molecule while tailoring functional properties for advanced applications. Resarchers are far from perfecting the delicate intricacy of mimicking such elegant biological processes, and improvements in all areas of MIP synthesis remain a vibrant and active topic. Various methods explored to synthesize MIPs with impressive recognition capabilities towards target molecules and the recent applications of MIPs are found herein. This review aims to dissect the synthetic steps required to generate MIPs, with emphasis on the more recent routes utilized and overall application advances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据