4.8 Article

Persistent Production of Reactive Oxygen Species with Zn2GeO4:Cu Nanorod-Loaded Microneedles for Methicillin-Resistant Staphylococcus Aureus Infectious Wound Healing

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 15, 页码 17142-17152

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c02503

关键词

persistent luminescence nanorods; long-persistent photocatalysis; microneedles; persistent ROS production; antibacterial activity

资金

  1. National Natural Science Foundation of China [21934002, 21804057, 21804056]
  2. Fundamental Research Funds for the Central Universities [JUSRP121005]
  3. Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province

向作者/读者索取更多资源

This study reports the preparation of Zn2GeO4:Cu2+ persistent luminescence nanorods and their application in treating MRSA-infected wounds. ZGC shows a long-persistent photocatalytic effect, continuously producing multiple ROS without the need for in situ excitation. ZGC@MNs patches exhibit excellent antibacterial activity and biocompatibility for promoting wound healing.
Skin wound infection caused by methicillin-resistant Staphylococcus aureus (MRSA) is an urgent concern. Photodynamic therapy has emerged as a promising means of combating bacterial infection. However, continuous or repeated in situ light excitation is required for photosensitizers to produce reactive oxygen species (ROS), and most photosensitizers need sufficient oxygen to produce singlet oxygen (O-1(2)), which greatly limits their clinical application. In this work, we report the preparation of Zn2GeO4:Cu2+ (ZGC) persistent luminescence nanorods with excellent ability for persistent ROS production after stopping excitation for MRSA infectious wound healing. The prepared ZGC nanorods were loaded into dissolvable microneedles (MNs) (ZGC@MNs) to penetrate biofilms and treat MRSA-infected wounds in a minimally invasive manner. ZGC showed a long-persistent photocatalytic effect to constantly produce multiple ROS (O-1(2), hydroxyl radical, and superoxide radical) accompanied by persistent luminescence after a pre-illumination. The MN tips of ZGC@MNs were rapidly dissolved to release ZGC for the continuous production of multiple ROS for at least 48 h with no need for in situ excitation and no special requirement on the amount of oxygen for eliminating MRSA biofilms. The developed ZGC@MN patches exhibited excellent antibacterial activity and biocompatibility for effectively reducing inflammation and promoting wound healing in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据