4.7 Article

Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions

期刊

CHEMICAL COMMUNICATIONS
卷 58, 期 49, 页码 6898-6901

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cc01820a

关键词

-

向作者/读者索取更多资源

Accurate potential energy surfaces (PES) are required for predicting thermophysical properties from molecular principles. This study presents a widely-applicable method that produces first-principles PES using Gaussian Processes (GP) as a machine learning technique. The method accurately interpolates three-body non-additive interaction data and does not require modification for different molecules. It produces highly accurate interpolation from fewer training points and enables more accurate ab initio calculations. The method is exemplified by computing the PES for CO2-Ar mixtures, which allows for accurate first-principles predictions of various thermophysical properties.
Prediction of thermophysical properties from molecular principles requires accurate potential energy surfaces (PES). We present a widely-applicable method to produce first-principles PES from quantum chemistry calculations. Our approach accurately interpolates three-body non-additive interaction data, using the machine learning technique, Gaussian Processes (GP). The GP approach needs no bespoke modification when the number or type of molecules is changed. Our method produces highly accurate interpolation from significantly fewer training points than typical approaches, meaning ab initio calculations can be performed at higher accuracy. As an exemplar we compute the PES for all three-body cross interactions for CO2-Ar mixtures. From these we calculate the CO2-Ar virial coefficients up to 5th order. The resulting virial equation of state (EoS) is convergent for densities up to the critical density. Where convergent, the EoS makes accurate first-principles predictions for a range of thermophysical properties for CO2-Ar mixtures, including the compressibility factor, speed of sound and Joule-Thomson coefficient. Our method has great potential to make wide-ranging first-principles predictions for mixtures of comparably sized molecules. Such predictions can replace the need for expensive, laborious and repetitive experiments and inform the continuum models required for applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据