4.5 Article

Exploring the comorbidity mechanisms between asthma and idiopathic pulmonary fibrosis and the pharmacological mechanisms of Bu-Shen-Yi-Qi decoction therapy via network pharmacology

期刊

出版社

BMC
DOI: 10.1186/s12906-022-03637-7

关键词

Asthma; IPF; BSYQ decoction; Network pharmacology; Molecule docking

资金

  1. National Natural Science Foundation of China [81774074, 81973631]
  2. Shanghai Science and technology commission [18401901800]

向作者/读者索取更多资源

The study identified common therapeutic targets for asthma and IPF, with many overlapping proteins falling into the same statistically significant GO terms. The active ingredients of BSYQ decoction were found to regulate common pathological processes in asthma and IPF, such as inflammation response, cytokine production, leukocyte differentiation, and oxygen level response.
Backgrounds Asthma and idiopathic pulmonary fibrosis (IPF) are common chronic diseases of the respiratory system in clinical practice. However, the relationship and molecular links remain unclear, and the current treatment's efficacy is disappointing. Bu-Shen-Yi-Qi (BSYQ) decoction has proven effective in treating various chronic airway inflammatory diseases, including asthma and IPF. But the underlying pharmacological mechanisms are still to be elucidated. Methods This study searched the proteins related to asthma and IPF via TTD, CTD, and DisGeNET databases and then submitted to the STRING to establish the protein-protein interaction (PPI) network. The co-bioinformatics analysis was conducted by Metascape. The active ingredients of BSYQ decoction were screened from TCMSP, ETCM, BATMAN-TCM databases, and HPLC/MS experiment. The corresponding targets were predicted based on TCMSP, ETCM, and BATMAN-TCM databases. The shared targets for asthma and IPF treatment were recognized, and further GO and KEGG analyses were conducted with the DAVID platform. Finally, molecule docking via Autodock Vina was employed to predict the potential binding mode between core potential compounds and targets. Results Finally, 1333 asthma-related targets and 404 IPF-related proteins were retrieved, 120 were overlapped between them, and many of the asthma-related proteins fall into the same statistically significant GO terms with IPF. Moreover, 116 active ingredients of BSYQ decoction were acquired, and 1535 corresponding targets were retrieved. Eighty-three potential compounds and 56 potential targets were recognized for both asthma and IPF treatment. GO and KEGG analysis indicated that the inflammation response, cytokine production, leukocyte differentiation, oxygen level response, etc., were the common pathological processes in asthma and IPF, which were regulated by BSYQ decoction. Molecule docking further predicted the potential binding modes between the core potential compounds and targets. Conclusion The current study successfully clarified the complex molecule links between asthma and IPF and found the potential common targets. Then we demonstrated the efficacy of BSYQ decoction for asthma and IPF treatment from the angle of network pharmacology, which may provide valuable references for further studies and clinical use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据