4.7 Article

Soft, stretchable thermal protective substrates for wearable electronics

期刊

NPJ FLEXIBLE ELECTRONICS
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41528-022-00174-8

关键词

-

资金

  1. National Natural Science Foundation of China [U20A6001, 11872331]
  2. National Key Research and Development Program of China [2019YFE0117400]
  3. Zhejiang University K.P. Chao's High Technology Development Foundation

向作者/读者索取更多资源

Researchers have developed a soft and stretchable thermal protective substrate for wearable electronics, which can effectively reduce the increase in skin temperature while ensuring comfort.
Wearable electronics have continued to attract the attention of researchers and clinicians due to their great potential in medical applications. During their operations, the undesired heating may cause thermal discomfort or damage to skin. Seeking materials and structures for advanced thermal protection has become an urgent issue. Here, we report a soft, stretchable thermal protective substrate for wearable electronics with remarkable thermal insulating performance, mechanical compliance and stretchability. The thermal protective substrate features a composite design of the widely used polymeric material polydimethylsiloxane with embedded heat absorbing microspheres, consisting of phase change materials encapsulated inside the resin shell. Experimental and numerical studies show that the thermal protective substrate could be subjected to complex deformations over 150% and could reduce the peak skin temperature increase by 82% or higher under optimizations. In vivo demonstration of this concept on the mouse skin illustrates its unusual thermal protection capability for wearable thermal management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据