4.0 Article

Histopathological correlates of haemorrhagic lesions on ex vivo magnetic resonance imaging in immunized Alzheimer's disease cases

期刊

BRAIN COMMUNICATIONS
卷 4, 期 1, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/braincomm/fac021

关键词

amyloid beta; immunotherapy; cerebral amyloid angiopathy; siderosis

资金

  1. National Institutes of Health [R00 AG059893]
  2. Netherlands Organization for Scientific Research [Veni 016.196.021]
  3. Medical Research Council UK [G0501033]
  4. Alzheimer's Research UK [ART/PG2006/4, ART-EXT2010-1]

向作者/读者索取更多资源

Ex vivo MRI was used to investigate haemorrhagic amyloid-related imaging abnormalities in Alzheimer's disease patients undergoing beta-amyloid immunotherapy. The study found a possible association between these abnormalities and cerebral amyloid angiopathy.
Haemorrhagic amyloid-related imaging abnormalities on MRI are frequently observed adverse events in the context of amyloid beta immunotherapy trials in patients with Alzheimer's disease. The underlying histopathology and pathophysiological mechanisms of haemorrhagic amyloid-related imaging abnormalities remain largely unknown, although coexisting cerebral amyloid angiopathy may play a key role. Here, we used ex vivo MRI in cases that underwent amyloid beta immunotherapy during life to screen for haemorrhagic lesions and assess underlying tissue and vascular alterations. We hypothesized that these lesions would be associated with severe cerebral amyloid angiopathy. Ten cases were selected from the long-term follow-up study of patients who enrolled in the first clinical trial of active amyloid beta immunization with AN1792 for Alzheimer's disease. Eleven matched non-immunized Alzheimer's disease cases from an independent brain brank were used as 'controls'. Formalin-fixed occipital brain slices were imaged at 7 T MRI to screen for haemorrhagic lesions (i.e. microbleeds and cortical superficial siderosis). Samples with and without haemorrhagic lesions were cut and stained. Artificial intelligence-assisted quantification of amyloid beta plaque area, cortical and leptomeningeal cerebral amyloid angiopathy area, the density of iron and calcium positive cells and reactive astrocytes and activated microglia was performed. On ex vivo MRI, cortical superficial siderosis was observed in 5/10 immunized Alzheimer's disease cases compared with 1/11 control Alzheimer's disease cases (kappa = 0.5). On histopathology, these areas revealed iron and calcium positive deposits in the cortex. Within the immunized Alzheimer's disease group, areas with siderosis on MRI revealed greater leptomeningeal cerebral amyloid angiopathy and concentric splitting of the vessel walls compared with areas without siderosis. Moreover, greater density of iron-positive cells in the cortex was associated with lower amyloid beta plaque area and a trend towards increased post-vaccination antibody titres. This work highlights the use of ex vivo MRI to investigate the neuropathological correlates of haemorrhagic lesions observed in the context of amyloid beta immunotherapy. These findings suggest a possible role for cerebral amyloid angiopathy in the formation of haemorrhagic amyloid-related imaging abnormalities, awaiting confirmation in future studies that include brain tissue of patients who received passive immunotherapy against amyloid beta with available in vivo MRI during life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据