4.7 Article

Black to white transition of a charged black hole

期刊

PHYSICAL REVIEW D
卷 105, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.105.086003

关键词

-

资金

  1. John Templeton Foundation [61466]

向作者/读者索取更多资源

This study presents an exact solution to the Maxwell-Einstein equations, describing the collapse and bounce of a charged spherical mass at the same space location. The solution is locally isometric to the Reissner-Nordström metric and depends on seven parameters. It sheds light on the fate of black holes and discusses the potential effects of classical instabilities and Hawking radiation.
We present an exact solution of the Maxwell-Einstein equations, which describes the exterior of a charged spherical mass collapsing into its own trapping horizon and then bouncing back from an antitrapping horizon at the same space location of the same asymptotic region. The solution is locally but not globally isometric to the maximally extended Reissner-Nordstr??m metric and depends on seven parameters. It is regular and defined everywhere except for a small region, where quantum tunneling is expected. This region lies outside the mass: The mass bounce and its near exterior are governed by classical general relativity. We discuss the relevance of this result for the fate of realistic black holes. We comment on the possible effects of the classical instabilities and the Hawking radiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据